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Abstract
Quantum cloning machines for equatorial qubits are studied. For a 1 to 2 phase-
covariant quantum cloning machine, using Hilbert–Schmidt norm and Bures
fidelity, we show that our transformation can achieve the bound of the fidelity.

PACS numbers: 03.67.−a, 03.65.Ta, 89.70.+c

1. Introduction

Quantum computing and quantum information have been attracting a great deal of interest.
They differ in many aspects from the classical theories. One of the most fundamental
differences between classical and quantum information is the no-cloning theorem [1]. It
tells us that arbitrary quantum information cannot be copied exactly. The no-cloning theorem
for pure states is also extended to the case where a general mixed state cannot be broadcast
[2]. Recently, a stronger no-cloning theorem [3] has been proposed which combines the
no-cloning theorem [1] and no-deleting theorem [4]. However, the no-cloning theorem does
not forbid imperfect cloning. And several kinds of quantum cloning machines (QCMs) have
been proposed, such as the universal QCM [5], probabilistic QCM [6] and asymmetric QCM
[7]. The optimal fidelity and transformations of the universal QCMs are found in [5, 8–14].
Recently, an experiment on universal QCM was reported in [15].

In the proof of the no-cloning theorem, Wootters and Zurek introduced a QCM which has
the property that the quality of the copy it makes depends on the input states [1]. To diminish
or cancel this disadvantage, Bužek and Hillery proposed a universal quantum cloning machine
(UQCM) for arbitrary pure states where the copying process is input state independent. They
use the Hilbert–Schmidt norm to quantify distances between the input density operator and
the output density operators. Bruß et al [8] discussed the performance of a UQCM by
analysing the role of the symmetry and isotropy conditions imposed on the system and found
the optimal UQCM and the optimal state-dependent quantum cloning. Optimal fidelity and
optimal quantum cloning transformations of the general N to M (M > N) case are presented in
[10–13]. The relation between quantum cloning and superluminal signalling is proposed and
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discussed in [16, 17]. It was also shown that the UQCM can be realized by a network consisting
of quantum gates [18].

In the case of UQCM, the input states are arbitrary pure states. In this paper, we study
the QCM for a restricted set of pure input states. The Bloch vector is restricted to the
intersection of the x–z plane with the Bloch sphere. These kinds of qubits are the so-called
equatorial qubits [19] and the corresponding QCM is called phase-covariant quantum cloning.
Applying the method of Bužek and Hillery [5], we propose a possible extension of the original
transformation. We demand that (I) the density matrices of the two output states be the
same, and that (II) the distance between the input density operator and the output density
operators be input state independent. To evaluate the distance between two states, we use
both the Hilbert–Schmidt norm and Bures fidelity. There is a family of transformations which
satisfies the above two conditions. At a special point, we can obtain an optimal fidelity. The
correspondent transformation for the x–z equator agrees with the results of Bruß et al [19]
who studied the optimal quantum cloning for equatorial qubits by taking BB84 [20] states as
input. The fidelity of quantum cloning for the equatorial qubits is higher than the original
Bužek and Hillery UQCM [5] because we already know part of the information of the input
states. This is expected as the more information about the input is given, the better one can
clone each of its states.

In most cases of quantum computation and quantum information study, we generally
suppose that we can produce enough identical copies of a quantum state. However, it is
different in quantum cryptography. If a cheater (Eve) intends to eavesdrop on the quantum
states, a QCM will provide her with the most direct method. BB84 quantum key distribution
has been attracting a great deal of interest. Because only four states instead of six states
are used in this quantum key distribution, the optimal method eavesdropping is to use the
phase-covariant QCM instead of the well-known UQCM [19]. And further, Eve needs to
know the quality of her copy by various criteria. In this paper, we use two distinguishability
measures to quantify the quality of the cloning machine. For each distinguishability measure,
we compare both reduced density operators and the whole density operators between input
and output. And we show that these two distinguishability measures give the same result.

The paper is organized as follows. In section 2, we introduce the transformation for
the equator in the x–z plane. In section 3, we use the Hilbert–Schmidt norm to evaluate
the distance between the input state and output states, and the minimal distance is found.
In section 4, we use the Bures metric to define the fidelity, and the condition of orientation
invariance of the Bloch vector is studied.

2. Transformation

Instead of arbitrary input states, we consider the input state which we intend to clone as a
restricted set of states. It is a pure superposition state,

|�〉 = α|0〉 + β|1〉 (1)

with α2 + β2 = 1. Here, we use an assumption that α and β are real in contrast to complex
when we consider the case of UQCM. This means that the y component of the Bloch vector of
the input qubits is zero. Because there is just one unknown parameter in the input state under
consideration, we expect that we can achieve a better quality in quantum cloning if we can
find an appropriate phase-covariant QCM.

In order to have a better quality in phase-covariant quantum cloning than the UQCM, we
need a different cloning transformation. We propose the following transformation,
|0〉a1 |Q〉a2a3 → (|0〉a1 |0〉a2 + λ|1〉a1 |1〉a2)|Q0〉a3 + (|1〉a1 |0〉a2 + |0〉a1 |1〉a2)|Y0〉a3

|1〉a1 |Q〉a2a3 → (|1〉a1 |1〉a2 + λ|0〉a1 |0〉a2)|Q1〉a3 + (|1〉a1 |0〉a2 + |0〉a1 |1〉a2)|Y1〉a3

(2)
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where the states |Qj 〉a3 , |Yj 〉a3 , j = 0, 1 are not necessarily orthonormal. We will sometimes
drop the subscript a3 for convenience. Explicitly, this transformation is a generalization
of the original one proposed by Bužek and Hillery [5]. When λ = 0, this transformation
is reduced to the original transformation. Here, we remark that it is still unclear whether
the cloning transformation presented above can achieve the optimal point if we choose
appropriate parameters, because the supposed cloning transformation (2) is not the most
general one. We shall show in the following sections that this cloning transformation indeed
can achieve the optimal point. For convenience, we restrict λ to be real and λ �= ±1. We also
assume

〈Q0|Q1〉 = 〈Q1|Q0〉 = 0. (3)

Considering the unitarity of the transformation, we have the following relations:

(1 + λ2)〈Qj |Qj 〉 + 2〈Yj |Yj 〉 = 1 j = 0, 1 (4)

〈Y0|Y1〉 = 〈Y1|Y0〉 = 0. (5)

As proposed by Bužek and Hillery, we further assume the following relations to reduce the
free parameters:

〈Qj |Yj 〉 = 0 j = 0, 1 (6)

〈Y0|Y0〉 = 〈Y1|Y1〉 ≡ ξ (7)

〈Y0|Q1〉 = 〈Q0|Y1〉 = 〈Q1|Y0〉 = 〈Y1|Q0〉 ≡ η

2
. (8)

For simplicity, we shall use the following standard notation

|jk〉 = |j 〉a1 |k〉a2 j, k = 0, 1 (9)

and

|+〉 = 1√
2
(|10〉 + |01〉) |−〉 = 1√

2
(|10〉 − |01〉). (10)

Obviously, |±〉 and |00〉, |11〉 constitute an orthonormal basis.
The output density operator ρ

(out)
ab describing the output state after the copying procedure

reads

ρ(out)
a1a2

= |00〉〈00|
{

1 − 2ξ

1 + λ2
[λ2 + α2(1 − λ2)]

}
+ (|00〉〈10| + |00〉〈01| + |11〉〈10|

+ |11〉〈01| + |01〉〈00| + |10〉〈00| + |01〉〈11| + |10〉〈11|)
[η

2
αβ(λ + 1)

]
+ (|00〉〈11| + |11〉〈00|)

(
1 − 2ξ

1 + λ2
λ

)
+ ξ(|01〉〈10| + |01〉〈01| + |10〉〈10|

+ |10〉〈01|) + |11〉〈11|
{

1 − 2ξ

1 + λ2
[α2(λ2 − 1) + 1]

}
(11)

where ρ(out)
a1a2

= Tra3

[
ρ(out)

a1a2a3

]
with ρ(out)

a1a2a3
≡ |�〉(out)

a1a2a3

(out)
a1a2a3

〈�|. Taking the trace over mode a2

or mode a1, we get the reduced density operator for mode a1 or mode a2, ρ(out)
a1

or ρ(out)
a2

,

ρ(out)
a1

= ρ(out)
a2

= |0〉〈0|
(

(α2 + λ2β2)
1 − 2ξ

1 + λ2
+ ξ

)
(|0〉〈1| + |1〉〈0|)αβη(1 + λ)

+ |1〉〈1|
(
ξ + (β2 + λ2α2)

1 − 2ξ

1 + λ2

)
. (12)
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We see that the output density operators ρ(out)
a1

and ρ(out)
a2

are exactly the same. However, it is
well known that they are not equal to the original input density operator. Next, we first use the
Hilbert–Schmidt norm to evaluate the distance between the input density operator and output
density operators.

3. Hilbert–Schmidt norm

For two-dimensional space, the Hilbert–Schmidt norm is believed to give a reasonable result in
comparing density matrices though it becomes less appropriate for finite-dimensional spaces
as the dimension increases. The Hilbert–Schmidt norm defines the distance between the input
density operator and output density operator as

Da ≡ Tr
[
ρ(out)

a − ρ(in)
a

]2
(13)

where ρ(in)
a is the input density operator. The distance between the two-mode density operators

ρ(out)
a1a2

and ρ(in)
a1a2

= ρ(in)
a1

⊗ ρ(in)
a1

which corresponds to the ideal copy is defined as

D(2)
a1a2

= Tr
[
ρ(out)

a1a2
− ρ(in)

a1a2

]2
. (14)

With the help of relation (12), we find

Da =
{
ξ +

1 − 2ξ

1 + λ2
[α2(1 − λ2) + λ2] − α2

}2

+ 2α2(1 − α2)(λη + η − 1)2

+

{
ξ − 1 +

1 − 2ξ

1 + λ2
[1 + α2(λ2 − 1)] + α2

}2

. (15)

We demand that this distance be independent of the parameter α2. This means that the quality
of the copies it makes is independent of the input state:

∂

∂α2
Da = 0. (16)

We can choose the following solution:

η = 1 − λ

1 + λ2
(1 − 2ξ). (17)

Thus, we get

Da = 2

(
ξ

1 − λ2

1 + λ2
+

λ2

1 + λ2

)2

. (18)

In the case λ = 0, we find η = 1 − 2ξ and Da = 2ξ2. These are exactly the original results
obtained by Bužek and Hillery [5].

In order to calculate D(2)
a1a2

, we can rewrite the output density operator ρ(out)
a1a2

by choosing
the basis in (10). Substituting relation (17) into the two-mode output density operator, we
obtain

ρ(out)
a1a2

= |00〉〈00|
{

1 − 2ξ

1 + λ2
[λ2 + α2(1 − λ2)]

}
+ (|00〉〈+| + |+〉〈00| + |11〉〈+|

+ |+〉〈11|)
{√

2αβ
1 − λ2

2(1 + λ2)
(1 − 2ξ)

}
+ (|00〉〈11| + |11〉〈00|)

{
1 − 2ξ

1 + λ2
λ

}

+ 2ξ |+〉〈+| + |11〉〈11|
{

1 − 2ξ

1 + λ2
[α2(λ2 − 1) + 1]

}
. (19)
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By straightforward calculations, we also have

ρ(in)
a1a2

= α4|00〉〈00| +
√

2α3β(|00〉〈+| + |+〉〈00|) + α2β2(|00〉〈11| + |11〉〈00|)
+ 2α2β2|+〉〈+| +

√
2αβ3(|+〉〈11| + |11〉〈+|) + β4|11〉〈11|. (20)

And with definition (14), we obtain

D(2)
a1a2

= (U11)
2 + (U22)

2 + (U33)
2 + 2(U12)

2 + 2(U13)
2 + 2(U23)

2 (21)

where

U11 = α4 − 1 − 2ξ

1 + λ2
[λ2 + α2(1 − λ2)] U22 = 2ξ − 2α2 + 2α4

U33 = α4 − 2α2 + 1 − 1 − 2ξ

1 + λ2
[α2(λ2 − 1) + 1] U12 =

√
2αβ

[
α2 − 1 − λ2

1 + λ2

(
1

2
− ξ

)]

U13 = α2β2 − 1 − 2ξ

1 + λ2
λ U23 =

√
2αβ

[
β2 − 1 − λ2

1 + λ2

(
1

2
− ξ

)]
.

(22)

We still impose the condition

∂

∂α2
D(2)

a1a2
= 0 (23)

and then

ξ = (1 − λ)2

2(3 − 2λ + 3λ2)
. (24)

Substitution of these results into Da and D(2)
a1a2

gives

Da = (1 − 2λ + 5λ2)2

2(3 − 2λ + 3λ2)2
D(2)

a1a2
= 2(1 − 4λ + 12λ2 − 8λ3 + 7λ4)

(3 − 2λ + 3λ2)2
. (25)

Therefore, we can have a family of transformations which satisfy the two conditions (I)
and (II). In the case λ = 0, we recover the Bužek and Hillery result,

Da = 1
18 ≈ 0.056 D(2)

a1a2
= 2

9 ≈ 0.22. (26)

Our aim is to find smaller Da and D(2)
a1a2

for equatorial qubits,and to prove that the corresponding
cloning transformation is the optimal QCM. We can show that in the region 0 < λ < 1/3,
both Da and D

(2)
ab take smaller values than in the case λ = 0. When we choose

λ = 3 − 2
√

2 (27)

both Da and D(2)
a1a2

take their minimal values,

Da = 99 − 70
√

2

68 − 48
√

2
≈ 0.043 Da1a2 = 215 − 152

√
2

8(3 − 2
√

2)2
≈ 0.17. (28)

Thus for equatorial qubits, we can find smaller Da and D(2)
a1a2

, which means that QCM (2) has
a higher fidelity than the original UQCM [5] in terms of the Hilbert–Schmidt norm. Actually,
because we assume α and β to be real, only a single unknown parameter is copied instead of
two unknown parameters for the case of a general pure state. Thus a higher fidelity of quantum
cloning can be achieved. The case of spin flip has a similar phenomenon [18, 21].

Under condition (27), we have

ξ = 1

8
η =

√
2 − 1

12 − 8
√

2
. (29)
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We can realize vectors |Qj 〉, |Yj 〉, j = 0, 1 in two-dimensional space,

|Q0〉 =
(

0,
1

4 − 2
√

2

)
|Q1〉 =

(
1

4 − 2
√

2
, 0

)

|Y0〉 =
(

1

2
√

2
, 0

)
|Y1〉 =

(
0,

1

2
√

2

)
.

(30)

Transformation (2) is rewritten as

|0〉a1 |Q〉a2a3 → 1

4 − 2
√

2
[|00〉a1a2 + (3 − 2

√
2)|11〉a1a2 ]|↑〉a3 +

1

2
|+〉a1a2 |↓〉a3 (31)

|1〉a1 |Q〉a2a3 → 1

4 − 2
√

2
[|11〉a1a2 + (3 − 2

√
2)|00〉a1a2 ]|↓〉a3 +

1

2
|+〉a1a2 |↑〉a3 . (32)

This transformation agrees with that obtained by Bruß et al [19]. Using BB84 states as input,
they showed that this transformation is the optimal cloning transformation for equatorial
qubits. This means that the proposed cloning transformation for the x–z equator (2) indeed
realizes the optimal QCM within the Hilbert–Schmidt norm.

For an arbitrary λ with conditions (17) and (24) satisfied, we can still realize vectors
|Qj 〉, |Yj 〉, j = 0, 1 in two-dimensional space,

|Q0〉 = q|↑〉 |Q1〉 = q|↓〉 |Y0〉 = y|↓〉 |Y1〉 = y|↑〉 (33)

where we use the notation

q ≡
√

2

3 − 2λ + 3λ2
y ≡ 1 − λ√

6 − 4λ + 6λ2
. (34)

Thus all transformations (2) satisfy conditions (I) and (II). Explicitly, the quantum cloning
transformation for pure input states (1) can be written as

|0〉a1 |Q〉a2a3 → (|00〉a1a2 + λ|11〉a1a2)q|↑〉a3 + (|10〉a1a2 + |01〉a1a2)y|↓〉a3
(35)

|1〉a1 |Q〉a2a3 → (|11〉a1a2 + λ|00〉a1a2)q|↓〉a3 + (|10〉a1a2 + |01〉a1a2)y|↓〉a3 .

The distances defined by the Hilbert–Schmidt norm take the form (25).

4. Bures fidelity

For finite-dimensional spaces, the Hilbert–Schmidt norm becomes less appropriate when
the dimension increases. The Bures fidelity provides a more exact measurement of the
distinguishability of two density matrices. In this section, we will use the Bures fidelity to
check the result in the previous section. The fidelity is defined as

F(ρ1, ρ2) =
[

Tr

√(
ρ

1/2
1 ρ2ρ

1/2
1

)]2

. (36)

The value of F ranges from 0 to 1. A larger F corresponds to a higher fidelity. F = 1 means
that two density matrices are equal. For a pure state, ρ1 = |�〉〈�|, the fidelity can be defined
by an equivalent form F = 〈�|ρ2|�〉. We shall use definition (36) in this section.

It is known that a matrix

U =
(

− β

α
α
β

1 1

)
(37)
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diagonalizes ρ(in)
a [22],

ρ(in)
a = U

(
0 0
0 1

)
U−1. (38)

We thus have

F
(
ρ(in)

a , ρ(out)
a

) = ξ +
(1 − 2ξ)[2α4(1 − λ2) + 2α2(λ2 − 1) + 1]

1 + λ2
+ 2α2(1 − α2)η(λ + 1).

(39)

We demand that the fidelity be independent of the input state,

∂

∂α2
F
(
ρ(in)

a , ρ(out)
a

) = 0. (40)

This gives

η = 1 − λ

1 + λ2
(1 − 2ξ) (41)

and we obtain

F
(
ρ(in)

a , ρ(out)
a

) = 1 − ξ + λ2ξ

1 + λ2
. (42)

Next, we use the Bures fidelity to evaluate the distinguishability of density operators ρ(out)
a1a2

and
ρ(in)

a1a2
= ρ(in)

a1
⊗ ρ(in)

a1
. We have

F
(
ρ(in)

a1a2
, ρ(out)

a1a2

) = 1 − 2ξ

1 + λ2
[λ2 + α2(1 − λ2)]α4 + 2α2(1 − α2)λ

1 − 2ξ

1 + λ2

+ 2α2(1 − α2)(1 − 2ξ)
1 − λ2

1 + λ2
+ 4α2(1 − α2)ξ

+
1 − 2ξ

1 + λ2
[α2(λ2 − 1) + 1](1 − α2)2. (43)

We again impose the condition

∂

∂α2
F
(
ρ(in)

a1a2
, ρ(out)

a1a2

) = 0 (44)

which gives

ξ = (1 − λ)2

2(3 − 2λ + 3λ2)
. (45)

Thus, we finally have two Bures fidelities for one- and two-mode density operators,

F
(
ρ(in)

a , ρ(out)
a

) = 5 − 2λ + λ2

2(3 − 2λ + 3λ2)
(46)

F
(
ρ(in)

a1a2
, ρ(out)

a1a2

) = 2

3 − 2λ + 3λ2
. (47)

We find that the Hilbert–Schmidt norm and the Bures fidelity lead to the same relations (17),
(41) and (24), (45). However, fidelities (46) and (47) do not take the maxima simultaneously
which is different from the case of the Hilbert–Schmidt norm. In the region 0 < λ < 1

3 , for
both F

(
ρ(in)

a1a2
, ρ(out)

a1a2

)
and F

(
ρ(in)

a , ρ(out)
a

)
, we can have a higher fidelity than the original UQCM

which corresponds to λ = 0. This result agrees with the previous result using the Hilbert–
Schmidt norm. We use fidelity F

(
ρ(in)

a , ρ(out)
a

)
to define the quality of the copied equatorial

qubits. When λ = 3 − 2
√

2, F
(
ρ(in)

a , ρ(out)
a

)
takes its maximum which is the same as in the
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case of the Hilbert–Schmidt norm. Thus, we have shown that both the Hilbert–Schmidt norm
and the Bures fidelity give the same result.

When λ = 3 − 2
√

2, F
(
ρ(in)

a , ρ(out)
a

)
takes its maximum,

F
(
ρ(in)

a , ρ(out)
a

) ∣∣
λ=3−2

√
2 = 1

2
+

√
1

8
≈ 0.8536 (48)

which is larger than the original UQCM,

F
(
ρ(in)

a , ρ(out)
a

) ∣∣
λ=0 = 5

6 ≈ 0.8333. (49)

And we also have

F
(
ρ(in)

a1a2
, ρ(out)

a1a2

) ∣∣
λ=3−2

√
2 = 1

24 − 16
√

2
≈ 0.7286 > F

(
ρ(in)

a1a2
, ρ(out)

a1a2

) ∣∣
λ=0 = 2

3
≈ 0.6667.

(50)

We remark that the optimal fidelity (48) also agrees with the result obtained by Bruß
et al [19].

5. Summary and discussions

In studying the optimal UQCM, the condition of orientation invariance of the Bloch vector
is generally imposed [8]. Under the symmetry condition (I), the condition of orientation
invariance of the Bloch vector is equivalent to condition (II) that the distance between the
input density operator and the output density operators is input state independent. We can
check that for the case under consideration in this paper, the orientation invariance of the
Bloch vector means relation (17) or (41) which is the subsequence of condition (II).

Different from the UQCM, the copied qubits are separable in a phase-covariant cloning
machine. We can realize quantum cloning by using the quantum networks. By using the
fidelity between the input state and the reduced density operator of output, we can also
generalize the cloning to N qubits input and M copies [23], and 1 to 3 cloning and other cases
were studied independently in [24].

We have already mentioned that the transformation and optimal fidelity in this paper
agree with the results in [19]. However, we use a different method. And we use various
criteria to quantify the quality of this cloning machine. This is necessary because, for
example, in eavesdropping on quantum cryptography, Eve perhaps needs to compare different
distinguishability measures and then to choose a suitable one to use. In this paper, not only
are the reduced density operators used to compare the input and output, but also the whole
output state is used to compare the ideal output copies in quantifying the quality of the cloning
machine. An interesting result is that when we use the Bures fidelity as the quality measure, the
one-particle density matrices and two-particle density matrices give different optimal points.
When λ = 3 − 2

√
2, F

(
ρ(in)

a , ρ(out)
a

)
takes its maximum, whereas for λ = 1/3, F

(
ρ(in)

a1a2
, ρ(out)

a1a2

)
achieves its maximum. This could be useful in eavesdropping on quantum key distribution. If
Eve just uses the quantity F

(
ρ(in)

a1a2
, ρ(out)

a1a2

)
to find the quantum state in quantum cryptography,

she can adjust her cloning machine and let λ = 1/3 so that she can get the optimal result.
If both one-particle and two-particle density matrices are used, then λ = 3 − 2

√
2 seems

better. We should note that for UQCM, if we use the Bures fidelity as the quality measure, the
one-particle density matrices and two-particle density matrices give the same optimal point.

Recently, Jozsa proposed the stronger no-cloning theorem which states that if we want to
copy a quantum state exactly, the ancilla (blank) state should already have the full information
of this quantum state, see [3]. For the case of cloning an equatorial qubit, though the ancilla
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state does not contain the full information of this equatorial qubit, we can let the ancilla state
contain the partial information we already know about this equatorial qubit. This is perhaps
the reason why we can have a better copy than UQCM in which we know nothing about the
quantum state to be cloned.
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